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ABSTRACT
We explore a novel search strategy for dark matter in the form of massive compact halo
objects (MACHOs) such as primordial black holes or dense mini-haloes in the mass range
from 10−4 M� to 0.1 M�. These objects can gravitationally lens the signal of fast radio bursts
(FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the
previously studied femtolensing signal in gamma-ray burst spectra. Unlike traditional searches
using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological
distance scales (∼Gpc) rather than just their distribution in the neighbourhood of the Milky
Way. The method is thus particularly relevant for dark mini-haloes, which may be inaccessible
to microlensing due to their finite spatial extent or tidal disruption in galaxies. We find that the
main complication in FRB lensing will be interstellar scintillation in the FRB’s host galaxy
and in the Milky Way. Scintillation is difficult to quantify because it heavily depends on
turbulence in the interstellar medium, which is poorly understood. We show that, nevertheless,
for realistic scintillation parameters, FRB lensing can set competitive limits on compact dark
matter object, and we back our findings with explicit simulations.
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1 IN T RO D U C T I O N

Massive compact halo objects (MACHOs) have been widely dis-
cussed in the literature as possible dark matter candidates. In
particular, a lot of attention has been paid to two classes of objects:
primordial black holes (PBHs; Hawking 1971; Carr, Kuhnel &
Sandstad 2016; Sasaki et al. 2018), and ultracompact mini-haloes
(UCMHs; Hogan & Rees 1988; Kolb & Tkachev 1993; Kolb &
Tkachev 1994; Zurek, Hogan & Quinn 2007; Hardy 2017).1 For
concreteness, we will focus our discussion on the case of PBHs,
though most of our findings will apply also to other types of
MACHOs.

The interesting mass range for PBHs is between 10−16 M� and
103 M� (1017 grams to 1036 grams), with M� being the solar mass.
On the lower end of this range, the PBH abundance is strongly
constrained by non-observation of the γ -ray flux that would be

� E-mail: jkopp@cern.ch
1For recent N-body simulations of UCMHs in the context of dark matter
composed of the QCD axion see Vaquero, Redondo & Stadler (2019),
Buschmann, Foster & Safdi (2020), Eggemeier et al. (2019).

produced by PBHs due to their Hawking evaporation (Carr et al.
2010; Ballesteros, Coronado-Blázquez & Gaggero 2019; Arbey,
Auffinger & Silk 2020), and by measurements of the cosmic
microwave background (CMB) anisotropies that would be affected
by Hawking radiation in the early Universe (Poulter et al. 2019) (see
also Boudaud & Cirelli 2019; DeRocco & Graham 2019; Dasgupta,
Laha & Ray 2019, for constraints from injection of positrons and
neutrinos). At large PBH masses, constraints are due to accretion
on to PBHs, which would again affect the CMB anisotropies (Ali-
Haimoud & Kamionkowski 2017). A massive effort has been put
into exploring the available parameter space of PBH dark matter, in
particular via microlensing searches like MACHO (Allsman et al.
2001), EROS (Tisserand et al. 2007), OGLE (Wyrzykowski et al.
2011), and most recently SUBARU-HSC (Niikura et al. 2019).
Other methods to search for MACHOs in the abovementioned mass
range exist, but their sensitivity is typically inferior to microlensing.
Note also that several published constraints have not withstood
more careful analysis and are therefore now considered invalid
or controversial. Thus, big portions of MACHO parameter space
remain unconstrained, while others are only loosely constrained
and can still accommodate a sizable fraction of dark matter in the
form of MACHOs.

C© 2020 The Author(s)
Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/496/1/564/5856010 by C
ER

N
 - European O

rganization for N
uclear R

esearch user on 27 July 2020

http://orcid.org/0000-0003-0600-4996
mailto:jkopp@cern.ch
http://creativecommons.org/licenses/by/4.0/


Looking for MACHOs in FRB spectra 565

It is important to note that existing microlensing searches –
which are responsible for essentially all the non-controversial
constraints on MACHOs in the interesting mass range – are based
on observations in the Milky Way or the Local Group of galaxies.
Drawing conclusions on the MACHO abundance on cosmological
scales thus requires extrapolation, which suffers from several uncer-
tainties. First, translating observational results into constraints on
the MACHO abundance requires assumptions about the dark matter
density profile of the Milky Way, and for some observations like
those by SUBARU-HSC, of the other galaxies in the Local Group.
Secondly, the mass function of MACHOs and their abundance in the
Local Group may differ from those on cosmological scales. Indeed,
for the case of PBHs, one can expect the mass distribution to evolve
in time due to accretion and mergers. Composite MACHOs such as
UCMHs can be tidally disrupted inside big galactic haloes (Zhao
et al. 2005; Berezinsky, Dokuchaev & Eroshenko 2006; Goerdt
et al. 2007; Green & Goodwin 2007; Berezinsky, Dokuchaev &
Eroshenko 2014; Tinyakov, Tkachev & Zioutas 2016; Dokuchaev,
Eroshenko & Tkachev 2017; Fairbairn et al. 2018), so that more
of them can be found at larger redshifts and in less dense objects
than in today’s Milky Way. Finally, microlensing searches cannot
constrain UCMHs or other MACHOs of finite extent if their size
exceeds their Einstein radius at galactic distances (Dror et al. 2019).

In this paper, we investigate a search strategy that probes
MACHOs directly at cosmological distance scales. It is based on an
effect which we will call diffractive gravitational lensing. The basic
idea of diffractive lensing is that a MACHO placed between a distant
source and the observer and whose mass is too small to produce two
resolved images of the source still causes a phase difference between
the unresolved images. This leads to characteristic interference
patterns in the energy spectrum of the source. Diffractive lensing
was originally proposed in the context of gamma-ray burst (GRB)
sources, where it is known as femtolensing (Gould 1992; Stanek,
Paczynski & Goodman 1993).2 Diffractive lensing of GRBs could
be expected to constrain MACHOs in the mass range from 10−17

to 10−14 M� (Barnacka, Glicenstein & Moderski 2012). However,
due to the non-negligible angular sizes of typical GRBs, it turns
out that the interference pattern in the spectrum would be washed
out (Matsunaga & Yamamoto 2006), so that femtolensing does
not currently yield bounds on the MACHO abundance (Katz et al.
2018).

We propose here to apply the diffractive lensing technique to fast
radio bursts (FRBs, see e.g. reviews Katz 2018; Popov, Postnov &
Pshirkov 2018; Petroff, Hessels & Lorimer 2019) rather than GRBs.
As the photon wavelengths for FRBs are much longer than for
GRBs, the method will be sensitive to much heavier MACHOs,
namely those between 10−4 and 0.1 M�. The Einstein radii of
MACHOs in this mass range are much larger than those of the lenses
considered in the context of GRBs, therefore the requirement on the
source size is much less stringent and easily satisfied by putative
FRB progenitors.

Gravitational lensing of FRBs has been considered previously in
the literature: strong lensing, in particular the observation of two
consecutive bursts separated in time, has been proposed in Muñoz
et al. (2016) and further considered in Dai & Lu (2017), Li

2The term ‘femtolensing’ refers to the typical angular separation of order a
femto-arcsecond between the two images produced by the lenses considered
in the context of GRBs. In this paper we consider much heavier lenses
corresponding to larger angular separations between images, so we prefer
to designate the effect by the generic term ‘diffractive lensing’.

et al. (2018), and Laha (2018). Such an observation would be
sensitive to MACHOs of 10 M� to 100 M�. Diffractive lensing
of FRBs has been suggested in Zheng et al. (2014) and Eichler
(2017), where it was also pointed out that the main complication
in applying this technique is the distortion of FRB spectra by
scintillation (Rickett 1977; Rickett 1990; Narayan 1992). The latter
appears due to scattering of radio waves on the turbulent interstellar
medium (ISM), leading to multipath propagation of radio signals
and thus to random interference patterns in the frequency spectrum.
Nevertheless, ref. Eichler (2017) argued that the lensing signal
can be disentangled from scintillation by considering the temporal
autocorrelation of the electromagnetic field of the radio wave.

In this paper we take further steps to explore this idea. We show
that one does not need to measure the full electromagnetic field
amplitude to extract the lensing signal or confirm the absence
thereof. In fact, the entire analysis can be carried out in terms
of the intensity (fluence) spectrum of the wave, without any need
for phase information. This has practical importance as most FRB
detections occur in survey mode where the full field information
may not be recorded. We also demonstrate that the extraction of
the lensing signal from scintillation is possible whenever these
two phenomena are characterized by disparate frequency scales.
Apart from the regime considered in Eichler (2017) when the two
lensed images are unresolved by the scintillation screen, this also
includes the case when the scintillation screen does resolve the
images and distorts them incoherently, provided the lensing time
delay is longer than the inverse of the decorrelation bandwidth
of the scintillation. Finally, we take into account scintillation in the
intergalactic medium (IGM). For realistic parameter choices we find
IGM scintillation to be less relevant than scintillation in the Milky
Way and in the host galaxy of the source, as long as the line-of-sight
does not cross any major concentrations of ionized plasma, such as
galaxy clusters. Our analytic estimates are supported by numerical
simulations of FRB spectra with lensing and scintillation, using a
simplified model in which the ISM and IGM are described by 1D
scintillation screens.

We propose a data analysis procedure to search for the lensing
signal by looking for peaks in the Fourier transform of the FRB
intensity spectrum. We find that the sensitivity is improved if the
smooth component of the spectrum is first divided out in order
to reconstruct an approximation to the transfer function (the ratio
between the emitted and recorded intensity). This procedure also
reduces our sensitivity to imperfect modelling of the FRB spectrum.
The search for the peaks in the Fourier transform of the transfer
function is similar to the one used for resonance searches on
a smooth background in collider experiments. We validate our
procedure using the simulated data.

A precise modelling of scintillation is problematic due to the
poor understanding of the turbulent ISM and IGM, leading to large
uncertainties in the parameters governing scintillation. In spite of
these complications, we will see below that there is realistic hope of
extracting the lensing signal from FRB data. Moreover, the reach of
the method will significantly improve in the future with an increased
number of FRB detections, in particular thanks to the CHIME and
SKA telescopes, which are expected to detect a few tens of FRBs
per day (Macquart et al. 2015; Chawla et al. 2017). For the time
being, we will explore the sensitivity as a function of the scintillation
parameters and the number of FRBs.

The paper is organized as follows. In Section 2 we briefly
review the formalism of gravitational diffractive lensing as well
as the potential and the limitations of MACHO searches using this
technique. In Section 3 we address the problem of scintillation.
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566 A. Katz et al.

We review the relevant properties of the ISM and IGM, and
we analytically estimate the impact of scintillation on diffractive
lensing of FRBs. We then proceed in Section 4 to the discussion of
numerical results obtained by explicitly simulating the propagation
of FRB signals. In this section, we also present our main results in
the form of sensitivity estimates. We conclude in Section 5.

2 R EVIEW OF DIFFRAC TIVE LENSING

Consider a distant source such as an FRB, and a gravitational lens
close to the line of sight. For our purposes, it is sufficient to consider
the source and the lens to be point-like. In general, a point-like lens
produces two images of the source, but if the lens has a small
mass, the observer will not be able to resolve them. However, the
photons corresponding to the two images travel different distances
and experience different gravitational potentials, so their traveltimes
will differ by an amount �t. This leads to a relative phase shift �φ =
ω �t , where ω is the photon energy. If �φ � O(1), an interference
pattern will appear in the photon energy spectrum, and may allow
detection of the lens even when the two images are not resolved.

More quantitatively, the time delay between the images is given
by3

�t = DLDS

DLS

( |�θ − �β|2
2

− ψ(�θ )

)
, (1)

where DL, DS, DLS are the comoving distances between the observer
and the lens, between the observer and the source, and between the
lens and the source, respectively; β is the angle under which the
observer would see the source in the absence of the lens, whereas
θ is the angle of the lensed image; ψ(�θ ) stands for the lensing
potential, which depends on the density profile of the lens. The
lensing potential of a point-like mass M is

ψ(�θ) = θ2
E log |�θ | , (2)

where the Einstein angle

θE ≡
(

4GM(1 + ZL)
DLS

DLDS

)1/2

(3)

is a measure for the typical angle under which the images are
observed relative to the lens. In equation (3), ZL denotes the redshift
of the lens. The positions of the images are given by the solutions
to the lens equation,

�θ − �β = �∇ψ(�θ ) , (4)

which for a point-like lens gives two locations

θ± = 1

2

(
β ±

√
β2 + 4θ2

E

)
. (5)

Different signs of the two angles here mean that the images occur
on opposite sides of the lens. Denoting y ≡ β/θE, the magnifications
of the two images are (Bartelmann 2010)

μ± = y2 + 2

2y
√

y2 + 4
± 1

2
. (6)

3We work in the units c = � = 1 and assume that the background spactime
is described by the spatially flat Friedmann–Robertson–Walker metric.

Their interference leads to the observed image, which, for a point-
like source and lens, is magnified by a factor

μ = y2 + 2

y
√

y2 + 4
+ 2

y
√

y2 + 4
sin

(



[
y
√

y2 + 4

2

+ log

∣∣∣∣y +
√

y2 + 4

y −
√

y2 + 4

∣∣∣∣
])

(7)

compared to the unlensed source. Here, the frequency dependence
that creates the interference pattern enters through the dimensionless
parameter


 ≡ 4GM(1 + ZL) ω . (8)

The requirement ω �t � O(1) for the observability of lensing-
induced interference patterns immediately tells us the lens masses
to which a given search will be sensitive. For typical values of θ ,
β ∼ θE, the two terms in parentheses in equation (1) are of similar
order, and using equation (3) for the Einstein angle, we find �t ∼ Rs,
where Rs is the Schwarzschild radius of the lens. This explains why
femtolensing of GRBs (Gould 1992), where photons have energies
of order 10 keV to 1 MeV, is most sensitive to lenses between
10−17 M� and 10−14 M�. For fast radio bursts, with typical photon
energies of order 10−6 eV (frequencies of order GHz), lens masses
between 10−4 M� and 0.1 M� will be relevant. This mass range
extends to higher masses than one might naively expect thanks to
the excellent frequency resolution of radio telescopes, which allows
us to resolve the interference pattern even if ω �t is significantly
larger than one.

Let us mention some caveats to the discussion above. First, we
note that at ω �t ∼ 1 the geometric optics approximation with two
well-defined lensed images breaks down and wave optics effects
need to be taken into account (Ulmer & Goodman 1995). The
observed signal is then found by evaluating the full Fresnel integral
over the lens plane, which leads to the observed magnification

μ =
∣∣∣∣ 


(2πi)θ2
E

∫
d2 �θ eiω�t(�θ)

∣∣∣∣
2

, (9)

where �t is given by equation (1). For a point source and a point-
like lens, equation (9) can be evaluated analytically (Nakamura &
Deguchi 1999; Katz et al. 2018), but in the general case the integral
needs to be performed numerically. We compare the magnification
in the geometric optics approximation to the result of a full wave
optics calculation in Fig. 1. As expected, the effect of wave optics
is most pronounced only at small frequencies, 
 � 1. The typical
frequencies at which we observe FRBs are around 1 GHz, which
for lens masses � 10−4 M� corresponds to 
 � 1. We illustrate in
Fig. 1 that in this regime wave optics corrections are negligible.

A second potential caveat is related to the angular size of the
source. If the latter is too large, but unresolved by the observer, the
integral over signals from different regions in the source will wash
out any lensing-induced interference patterns. More precisely, this
happens when the argument of the sine in equation (7) varies by an
amount � 1 over the angular diameter of the source. Denoting this
diameter, normalized to θE, as σ y, interference fringes are thus only
observable if


σy

√
y2 + 4 � 1 . (10)

For a 10−4 M� lens about half-way between the observer and a
source at 1 Gpc, and for 
 ∼ 10, this condition implies that wash-
out is avoided for sources with a physical diameter � 1013 cm. This
is a conservative estimate in the sense that, for heavier lenses, the
maximum allowed diameter will only increase. FRBs are variable on
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Looking for MACHOs in FRB spectra 567

Figure 1. The diffractive lensing signal as a function of photon frequency.
The vertical axis displays the ratio of the observed intensity with and without
lensing, the bottom horizontal axis shows the dimensionless frequency
defined in equation (8), and the top horizontal axis translates 
 into
a physical frequency for a specific choice of lens mass and redshift.
We compare two different angular separations between the lens and the
source (red versus green lines), and we also compare the geometric optics
approximation (dashed) to a full wave optics calculation (solid), concluding
that, for our purposes (ν ∼ GHz) geometric optics is always a valid
approximation.

short time scales tvar � msec. Allowing for relativistic expansion of
the emitting matter with a bulk Lorentz factor Γ , one can estimate
the apparent transverse size of the source as aS 	 tvarΓ (see e.g.
appendix A of ref. Katz et al. 2018 for a derivation). One concludes
that for realistic values of Γ < 105 the size of the FRB source is
irrelevant for the lensing signal.

We are going to see below that this conclusion may change in
the presence of strong scintillation in the FRB host galaxy. The
scintillation increases an effective size of the source and thereby
suppresses the lensing pattern. We defer the study of this effect to
the next section.

The above discussion can be generalized to the case of non-point-
like lenses along the lines of ref. Katz et al. (2018). In particular, it
applies to UCMHs as long as their density slope is steep enough to
produce multiple images of the source.4

3 SCINTILLATION

We now turn to the physics of scintillation in ISM and IGM.
Scintillation leads to distortions of the signals from distant FRBs
that can look very similar to the distortions caused by diffractive
gravitational lensing. To disentangle the two, we must therefore
carefully model the physics of scintillation.

3.1 Scintillation primer

When the radio waves from a distant FRB pass through the
turbulent ISM and IGM environments, they will suffer refraction
and diffraction, implying that signals can reach the observer along
many different trajectories. Photons travelling along different paths
will interfere, leading to chaotic modulation of the observed FRB
frequency spectrum. The physics here is similar to the physics of

4In the case of a power-law UCMH density profile, ρ ∝ r−δ , multiple images
appear if δ > 1.

Figure 2. Distortion of a plane wave by scintillating material modelled as
a thin screen. The dashed lines show the wavefront before and after the
passage through the screen.

atmospheric scintillation which makes the stars flicker; as FRBs
emit at different wavelength, their signals are not significantly
affected by the Earth’s atmosphere, but mainly by the ISM.

In the subsequent discussion, we follow refs. Narayan (1992),
Lorimer & Kramer (2005), Woan (2011). Scintillation can be
modelled by assuming that the turbulent plasma which is responsible
for multipath propagation is confined to a thin screen. The position
of the screen is chosen to be about half-way through the scintillating
medium. For scintillation in the Milky Way’s ISM, this typically
means a scintillation screen O(kpc) away from the observer;
scintillation in the IGM can be described by a scintillation screen at
a distance of O(Gpc), for example half-way between the source and
the observer. For simplicity, we perform the analysis in Minkowski
spacetime, neglecting redshift effects.

Consider a plane wave of amplitude fin(ω) falling perpendicularly
on to a scintillation screen which distorts the wavefront by adding to
it a random phase ϕ(ω, �x), where �x is the coordinate on the screen
(see Fig. 2). The signal which an observer at a point O, located at
a distance DScO from the screen, receives is given by the Fresnel
integral,

fobs(ω) = ωfin(ω)

2πiDScO

∫
d2x ei�(ω,�x) . (11)

with the phase

�(ω, �x) = ω x2

2DScO
+ ϕ(ω, �x) . (12)

Here, the first term accounts for the geometric phase, which arises
because of the different distances travelled by photons passing the
screen at different positions �x. The phase perturbation ϕ(ω, �x) in
the second term is characterized by the diffractive scale rdiff, which
is the distance scale on the scintillation screen over which ϕ(ω, �x)
varies by O(1). More precisely, rdiff is defined using the phase
structure function,

ξ (ω, |��x|) ≡
〈(

ϕ(ω, �x) − ϕ(ω, �x + ��x)
)2
〉

(13)

through the equation

ξ (ω, rdiff) = 1 . (14)

The averaging in equation (13) is performed over an ensemble
of realizations of the random phase ϕ(ω, �x). Due to statistical
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568 A. Katz et al.

homogeneity of the scintillation screen, this is equivalent to the
spatial averaging over the screen. The diffractive scale derives its
name from the fact that it sets the angle θdiff over which radiation
is typically diffracted by the screen:

θdiff = 1

ω rdiff
. (15)

As we will see below, rdiff is frequency-dependent.
In the case of weak scintillation, where the scintillation phase

ϕ(ω, �x) varies more slowly with �x than the geometric phase, the
radiation the observer receives from a given angular position on the
sky comes from the first Fresnel zone of the screen, namely a region
of size

rF =
√

DScO/ω . (16)

This is the distance over which the geometric phase changes by
O(1), so the weak scintillation regime is characterized by the
condition rdiff � rF. In the opposite limit of strong scintillation
(rdiff � rF), the observed signal comes instead from a region of
size

rref = θdiff DScO = DScO

ω rdiff
. (17)

rref is called the refractive scale. The different length scales on the
scintillation screen are related by rF = √

rdiff rref.
In this paper we are only interested in the energy spectra of

FRBs, not in the spatial or temporal variation of their intensity.
Still, it is instructive to consider the radiation intensity as a function
of position in the observer plane to understand the designation
‘refractive scale’ for rref and ‘diffractive scale’ for rdiff Moniez
(2003). As the scintillating medium moves, the picture in the
observer plane will move as well leading to temporal variations
in the observed signal. In the case of strong scintillation, we expect
to see a diffraction pattern of intensity variations over scales of the
order of rdiff (‘diffractive scintillation’), because this is by definition
the scale over which ϕ(ω, �x) changes byO(1). We also expect to see
intensity variation over larger scales of the order of rref (‘refractive
scintillation’). As discussed above, each point on the screen emits
radiation predominantly into a cone of the angular size θdiff =
rref/DScO. Depending on the gradient of the refractive index, the
cones from neighbouring points will be refracted towards each
other, which leads to an increase in observed radiation intensity,
or away from each other, which leads to a decrease in observed
radiation intensity. These intensity variations are only observable
at scales larger than the cone size, that is � rref. They correspond
to temporal variations on Time-scales ∼rref/v⊥, where v⊥ is the
transverse velocity of the scintillating medium. For the study of
FRBs, refractive scintillation is not relevant as the displacement of
the screen over the duration of the burst is negligible.

For weak scintillation, the observer will only register intensity
variations on the scale rF. Lines of sight separated by larger scales
will effectively receive radiation from disjoint regions on the screen.

3.2 Separating lensing and scintillation

Let us now assume that the signal from a distant FRB is gravitation-
ally lensed by a compact object such as a PBH close to the line of
sight before it is distorted by a scintillation screen (see illustration in
Fig. 3). For the purposes of this discussion we will restrict ourselves
to lensing in the geometric optics limits. We have already seen in
Section 2 that this approximation is sufficient for the lens masses
we are interested in.

Figure 3. A fast radio burst gravitationally lensed by a compact object. The
superposition of the signals corresponding to the two images passes through
a scintillating medium before reaching the observer.

We describe the time-dependent FRB signal at the source as

Fin(t) =
∫

dω

2π
fin(ω)e−iωt , (18)

where fin(ω) is the amplitude of the radiation at frequency ω. Lensing
in the geometric optics approximation splits this signal into two parts
with different amplitudes A and B, and with a relative propagation
time delay �t (see equation 1):

Flens(t) = AFin(t) + BFin(t − �t) . (19)

A scintillation screen between the lens and the observer additionally
imparts random noise on the lensed signal. The observed signal from
a distant source, after passing a gravitational lens (e.g. a PBH) and
then a scintillation screen (e.g. due to the Milky Way’s ISM), can
be written as

fobs(ω) = ωfin(ω)

2πiDScO

∫
d2x ei�(ω,�x)

(
AeiωδtA(�x) + Beiω[�t+δtB (�x)]

)
. (20)

Here, the terms δtA,B (�x) account for the variation of the lensing-
induced time delays with �x. This variation originates from the fact
that the lens is seen under a different angle relative to the source from
different points on the screen. Taking the square of this expression
we obtain the intensity spectrum,

|fobs(ω)|2 = |fin(ω)|2
(
|A(ω)|2 + |B(ω)|2

+A∗(ω)B(ω) eiω�t + A(ω)B∗(ω) e−iω�t
)

, (21)

where

A(ω) = A ω

2πiDScO

∫
d2x ei(�(ω,�x)+ωδtA(�x)) (22)

and similarly for B(ω). We observe the presence of interference
terms characteristic of diffractive lensing. If the amplitudes A,
B were constant, these terms would lead to regular periodic
modulation of the observed intensity, as discussed in Section 2.
Scintillation complicates the picture by making the amplitudes
frequency dependent. Nevertheless, the lensing signal can still be
extracted if the product of the amplitudes A∗(ω)B(ω) contains
a slowly varying component that survives upon averaging over
frequency intervals �ω � (�t)−1. Indeed, in this case the Fourier
transform of the spectrum (21) will have a peak corresponding to
the lensing time delay �t.

To estimate the size of the slowly varying component we consider
the product of the amplitudes smeared with a Gaussian function of
width �ω,

Q(ω,�ω) =
∫

dω′
√

2π�ω
e

− (ω′−ω)2

2�ω2 A∗(ω′)B(ω′) . (23)
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Looking for MACHOs in FRB spectra 569

Its characteristic value is given by the ensemble average 〈|Q(ω,
�ω)|2〉 over random realizations of the scintillation phase. This
average involves the correlator of four amplitudes,

〈A∗(ω′)B(ω′)A(ω′′)B∗(ω′′)〉 . (24)

In the case of strong scintillation the integral (22) extends over
many Fresnel regions. The contributions of different regions are
essentially statistically independent. Then, by the central limiting
theorem, the statistics of the amplitudes A(ω) and B(ω) are close
to Gaussian and we can replace (24) by

〈A∗(ω′)A(ω′′)〉 〈B(ω′)B∗(ω′′)〉 + 〈A∗(ω′)B(ω′)〉 〈A(ω′′)B∗(ω′′)〉 ,

(25)

where we have used that the correlator 〈A(ω′)B(ω′′)〉 vanishes. Our
next task is to estimate the two-point correlators entering into this
expression.

Let us start with

〈A∗(ω′)A(ω′′)〉 ≡ A2C0(ω′′ − ω′) , (26)

where on the r.h.s. we introduced the frequency autocorrelation
function for the signal coming from a single image. A similar
equation holds for the correlator of the B amplitudes. An important
characteristic of the scintillation-induced noise is its decorrelation
bandwidth ωdec. The noise amplitude is correlated at frequencies
separated by less than ωdec and uncorrelated otherwise. An estimate
for ωdec is obtained by recalling that the observer sees a patch
of diameter rref on the scintillation screen. Over this distance, the
geometric phase (first term in equation 12) varies by an amount
ωr2

ref/(2DScO). A shift in frequency by 2DScO/r2
ref changes the

phases at different points of the patch by order unity resulting
in decorrelation of the scintillation noise. Thus we arrive at the
estimate

ωdec ∼ 2DScO

r2
ref

. (27)

Note that we assumed above that the random phase ϕ(ω, �x) (second
term in equation 12) changes with frequency in the same way or
more slowly than the geometric phase. This is indeed the case for
scintillation in ionized plasma, where ϕ is inversely proportional to
frequency (see the next subsection). The decorrelation bandwidth
sets the range of the autocorrelation function (26): one expects that
C0 is of the order of 1 if |ω′′ − ω

′ | � ωdec and quickly decreases
outside this range.

The second term in equation (25) contains the cross-correlation
between the amplitudes of the two lensed images at fixed frequency
〈A∗(ω)B(ω)〉. Its magnitude depends on whether the two images
are distorted by scintillation screen in the same way (coherently)
or independently (incoherently). In the first case the correlation is
order-one, whereas in the second case it is suppressed. To determine
the conditions for coherent/incoherent distortion, let us consider the
variation δtB (�x) − δtA(�x) of the lensing-induced time delay over the
scintillation screen. This can be found by noting that a change of
position on the screen changes the difference between the viewing
angles of the lens and the source by δβ = (xDLS)/(DLDS). Hence,
the variation of the time delay is given by

δtB − δtA = d�t

d �β · �x DLS

DLDS

= ��θ �x , (28)

where ��θ is the angular distance between the A and B images. In the
second equality we have used equation (1). Due to scintillation, the
observer receives photons from a region of size rref on the screen. If

the variation of the lensing-induced phase over this region is small,
we can neglect it in the integral (22) for the amplitudes and obtain,

〈A∗(ω)B(ω)〉 = AB

〈∣∣∣∣ ω

2πiDScO

∫
d2x ei�(ω,�x)

∣∣∣∣
2〉

∼ AB . (29)

In the opposite regime a fast lensing-phase variation leads to strong
suppression of the correlation between the amplitudes. Thus, in
general we can write,

〈A∗(ω)B(ω)〉 = AB · U(ω �θ rref) , (30)

where the function U is of the order of unity when its argument is
less than 1 and quickly vanishes outside this range.5

We now return to the smeared amplitude of the interference term
(equation 23). Collecting our previous results from equations (26)
and (30) we obtain,

〈|Q(ω,�ω)|2〉 = A2B2

{∫
dω−

2
√

π�ω
e

− ω2−
4�ω2

∣∣C0(ω−)
∣∣2

+∣∣Ū(ω �θ rref)
∣∣2
}

, (31)

where we have denoted by Ū the correlator (30) averaged over a
range of frequencies �ω. Extraction of the lensing signal is possible
whenever either of the two terms in brackets is sizable, implying
that the interference amplitude has a piece that does not vanish when
averaged over frequency intervals �ω � (�t)−1. If �ω is smaller
than the decorrelation bandwidth, the autocorrelation function in
the first term can be replaced by unity and the whole integral equals
1. In the opposite regime �ω � ωdec it becomes suppressed as
ωdec/�ω. Recalling that we want the averaging interval �ω to
be at least as large as (�t)−1, we conclude that the first term in
equation (31) is O(1) for long lensing delays �t � (ωdec)−1. The
magnitude of the second term in equation (31) is controlled by
the angular separation between the lensed images. Given that the
characteristic size of �θ is set by the Einstein angle θE, we can
rephrase the condition for this term to be significant as ω θE rref < 1.
In this way we arrive at four possible scenarios, which are illustrated
in Fig. 4:

(a) �t � (ωdec)−1, ω θE rref � 1 (region above the red and blue
lines in Fig. 4). In this case, both terms in equation (31) are sizeable.
The lensing phase ω�t varies much faster with frequency than
the scintillation phase �(ω, �x), and does not change substantially
across the scintillation screen. Therefore, a clear lensing pattern
can be observed in the form of rapid periodic variations of the
radiation intensity with ω. The envelope of the lensing wiggles
in the frequency spectrum is modulated over frequency intervals
�(�t)−1 by scintillation effects and by the variation of the lensing
phase across the screen.
This behaviour is clearly visible in the top panels of Fig. 5. In the
left-hand part of this figure, we show the transfer function

|T (ν)|2 ≡
∣∣∣∣fobs(ν)

fin(ν)

∣∣∣∣
2

, (32)

while in the middle part, we plot the autocorrelation function of the
normalized signal amplitude,

C(dν) ≡
∣∣〈T ∗(ν) T (ν + dν)〉∣∣〈|T (ν)|2〉 . (33)

5Under general assumptions about the statistical properties of the scin-
tillation phase, one can show that U (z) is exponentially suppressed at
z > 1.

MNRAS 496, 564–580 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/496/1/564/5856010 by C
ER

N
 - European O

rganization for N
uclear R

esearch user on 27 July 2020



570 A. Katz et al.

Figure 4. Observability of FRB lensing by compact dark matter objects as
a function of the lens mass M and of the diffractive scale corresponding to
interstellar scintillation in the Milky Way. We assume an FRB at a comoving
distance of 1 Gpc, and a lens at 0.5 Gpc. The angular separation between
the lens and the (unlensed) source, normalized to the Einstein angle, is y =
β/θE = 0.5. We consider 1 GHz radio waves, which are perturbed by a
scintillation screen at 1 kpc from the observer.

Here ν = ω/(2π ) is the radiation frequency and averaging is
performed over a large frequency interval. In the right-hand part of
Fig. 5, we show the Fourier transform of |T(ν)|2. As expected, the
lensing signal is clearly visible, with its envelope only marginally
modulated due to scintillation.

(b) �t � (ωdec)−1, ω θE rref � 1 (region below the blue, but
above the red line in Fig. 4). The variation of the lensing phase
over the scintillation screen is fast, so the two lensed images are
distorted incoherently. Thus, the second term in equation (31) is
suppressed. Nevertheless, the first term remains of the order of
unity as the amplitudes A(ω) and B(ω) vary slowly as functions of
ω. A clear lensing signal still survives both in the transfer function
and in the autocorrelation function. This is illustrated in the second
row of panels in Fig. 5.

(c) �t � (ωdec)−1, ω θE rref � 1 (region below the red, but
above the blue line in Fig. 4). When the time delay �t be-
tween the two lensed images is shorter than the inverse of the
decorrelation bandwidth ωdec, the scintillation factor ei�(ω,�x) in
equation (20) varies much faster than the lensing factor eiω�t.
The first term in equation (31) is then small. On the other hand,
we can neglect the variation of the lensing phase over the screen,
ω δt(�x), so the two lensed images are distorted coherently and the
second term in equation (23) is sizable. The lensing signal will
be discernible as a modulation of the envelope of an otherwise
chaotic spectrum. Indeed, the panels in the third row in Fig. 5
illustrate this behaviour: we observe high-frequency scintillation
noise, superimposed on regular periodic oscillations due to lens-
ing. As expected, the signal disappears from the autocorrelation
function, but remains in the Fourier transform of the transfer
function.

(d) �t � (ωdec)−1, ω θE rref � 1 (region below the red and blue
lines in Fig. 4). In this case, the fast variations of the scintillation
factor ei�(ω,�x) combines with incoherent distortion of the images.
The amplitude A∗(ω)B(ω) of the interference term in equation (21)
does not contain a slowly varying component and the lensing signal
is strongly suppressed, see the last row in Fig. 5.

We conclude that a lensing signal is in principle observable in
regimes (a), (b), and (c), but strongly suppressed or completely
unobservable in regime (d).

However, there are practical considerations that may render the
signal unobservable even in regimes (a), (b), and (c). The distance
between subsequent lensing fringes in the spectrum, (�t)−1, should
be significantly larger than the instrumental frequency resolution,
but significantly smaller than the instrumental bandwidth. The first
condition is violated for too large lens masses, the second one for
lens masses that are too small.6 This effectively restricts the search
for compact objects using diffractive lensing of FRBs to the mass
range between ∼ 10−4 M� and ∼ 0.1 M�.

The above discussion applies also to the case of a scintillation
screen placed between the source and the lens (see Fig. 6). This
setup describes scintillation in the ISM of the FRB host galaxy or
in the IGM between the lens and the host. The amplitude of the
observed signal is again given by equation (20), with the screen–
observer distance DScO replaced by the screen–source distance DScS.
The rest of the analysis proceeds without change. Notice that strong
scintillation effectively spreads the source into a patch of radius rref

on the scintillation screen. The condition ω θE rref < 1 for coherent
distortion of the lensed images can then be reinterpreted as the
restriction (10) on the size of the source required for diffractive
lensing. One may wonder why one can discern the lensing pattern
in regime (b) even if this condition is violated. The reason is that the
signal from each point on the lensing screen is correlated at different
frequencies within a finite decorrelation bandwidth, which is not the
case for a truly incoherent source.

3.3 The turbulent interstellar and intergalatic medium

For a quantitative description of scintillation and its effect on
FRB signals, we need to discuss in more detail the properties
of the ISM and IGM. We focus in particular on interstellar and
intergalactic plasma, neglecting the neutral gas. The reason is
that the refractive index of a plasma deviates from unity by
much more than the refractive index of neutral gas, so that its
impact on the phase fluctuations that cause scintillation is much
larger.

3.3.1 The interstellar medium

Propagation in plasma modifies the dispersion relation of electro-
magnetic waves with wavenumber k,

ω2 = k2 + ω2
p . (34)

Here the plasma frequency is expressed in terms of the electron
number density ne, the electron mass me, and the electromagnetic
fine structure constant α,

ωp =
√

4παne

me

. (35)

As a consequence, a wave propagating in plasma acquires a
frequency-dependent phase shift,

ϕ(�x) = −2πα

meω

∫
ne(�x, z) dz , (36)

6Note that at masses � 10 M� one would expect lensing time delays �
10−3 s, comparable to the typical duration of FRBs. This would correspond
to modulation on kHz scales in the frequency spectrum. However, in this
regime, it seems more convenient to work directly with the temporal profile
of the FRBs (Dai & Lu 2017).
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Looking for MACHOs in FRB spectra 571

Figure 5. From top to bottom, we illustrate the four qualitatively different scintillation/lensing regimes discussed in the main text. The panels on the left-hand
side show in each case the transfer function |T(ν)|2, that is the observed radiation intensity, normalized to the radiation intensity without lensing and scintillation
(see equation 32). In the middle panels we plot the autocorrelation function (equation 33). The panels on the right-hand contain the Fourier transform of |T(ν)|2,
with the lensing peak highlighted by a vertical dotted line. In all panels, the horizontal axis is normalized in terms of the lensing time delay �t, and we use
ν0 = 1 GHz. Values of rdiff are quoted at the midpoint of the spectrum. The plots have been produced using the simulation code described in Section 4 (Katz,
Kopp & Xue 2019a), assuming an interstellar scintillation screen at 1 kpc, and a lens at DL = DS/2, y = β/θE = 0.5.

Figure 6. Setup with the scintillation screen between the source and the
lens.

with the integral taken along the line of sight. The phase shift
has strong frequency dependence and causes a time delay between
signals in different frequency bands. In practice, the net time delay
due to the average electron density n̄e is removed by the dedispersion
procedure that is typically applied to FRB data. Scintillation is due
to a residual phase shift generated by random fluctuations in the
electron density δne = ne − n̄e.

We assume that on the scales we are interested in the density
fluctuations obey statistical homogeneity and isotropy. Hence they
are characterized by an isotropic power spectrum related to the

density correlation function as,7

〈δne( �X + � �X) δne( �X)〉 =
∫

d3κ ei�κ� �X Pn(κ) , (37)

Here, �X = (�x, z) is a 3D coordinate vector, and κ ≡ |�κ|. Obser-
vations indicate that in a wide range of wavenumbers the power
spectrum obeys Kolmogorov-like scaling characteristic of a turbu-
lent behaviour (Armstrong, Cordes & Rickett 1981; Armstrong,
Rickett & Spangler 1995),

Pn(κ) = C2
n κ−11/3 ,

2π

lout
< κ <

2π

lin
. (38)

The outer scale of interstellar turbulence is estimated to be lout 	
10 ÷ 100 pc and the inner scale lin is smaller than 108 cm; the level
of turbulence is (Elmegreen & Scalo 2004; Scalo & Elmegreen
2004)

C2
n 	 (10−4 ÷ 10−3) m−20/3 . (39)

7We use the notation κ for the wavenumber of the fluctuations to distinguish
it from the wavenumber of the electromagnetic wave k.
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The amplitude of fluctuations with length scale l can be estimated
from the power spectrum as

δne

∣∣∣
l
∼

(
4π

∫ 2π/l

0
dκ κ2Pn(κ)

)1/2

∼ (6πC2
n)1/2

(
l

2π

)1/3

. (40)

Note that the fluctuation amplitude increases with scale and at the
outer scale becomes comparable to the mean electron density in the
galaxy,

δne

∣∣∣
lout

∼ n̄e , (41)

where n̄e = (0.01 ÷ 0.1) cm−3 (Cordes & Lazio 2002). The dom-
inant energy source for ISM turbulence is most likely supernova
remnants, but other sources like stellar winds or protostellar out-
flows can also play a role (Elmegreen & Scalo 2004; Shukurov
2011). Even though Kolmogorov scaling (38) is widely used for
the description of the turbulent ISM, its origin remains a matter
of debate. The original Kolmogorov theory (Kolmogorov 1941a,b)
predicts the spectrum of energy fluctuations in the inertial range
of an incompressible fluid PE(κ) ∝ κ−11/3. It is not entirely clear
why the spectrum of density fluctuations in the compressible ISM
should follow the same power law, for a review of existing proposals
(see Elmegreen & Scalo 2004). Following the common practice, we
will adopt (38) in our estimates.

We can now express the phase structure function ξ (ω, r) from
equation (13) in terms of Pn(κ) by plugging the relation (36)
between ϕ(ω, �x) and ne( �X), as well as the density correlation
function equation (37), into equation (13) (Rickett 1990):

ξ (ω, r) = 8π2L

(
2πα
meω

)2 ∫ ∞
0 dκ κ (1 − J0(κr))Pn(κ) . (42)

Here, L is the thickness of the ISM layer traversed by the wave
and J0(z) is the Bessel function. Substitution of the Kolmogorov
spectrum (38) yields,

ξ (ω, r) =
(

r

rdiff(ω)

)5/3

, (43)

with the diffractive scale

rdiff = 0.068 × (C2
nL)−3/5

(
meω

2πα

)6/5

. (44)

For the typical thickness of the galactic disc L ∼ 1 kpc we obtain,

rdiff = 4.2 × 109 cm

(
L

kpc

)−3/5(
C2

n

10−4 m−20/3

)−3/5(
ν

GHz

)6/5

.

(45)

According to Fig. 4, this belongs to the range of values admitting
separation of the lensing effects from scintillation. Note a rather
steep growth of the diffractive scale with frequency which results
in a rapid suppression of scintillation for frequencies above a few
GHz.

3.3.2 The intergalactic medium

While turbulence and thus scintillation in the ISM is already
fraught with large uncertainties, even less is known about the
properties of the IGM. In fact, much of what we know about IGM
turbulence comes from observations of FRBs (Macquart & Koay
2013; Cordes et al. 2016; Zhu, Feng & Zhang 2018). While to the
best of our knowledge IGM scintillation has not yet been measured
experimentally, there are indications that it might be accessible to
SKA (Koay & Macquart 2015).

Figure 7. Impact of intergalactic scintillation on FRB lensing by compact
objects, shown here as a function of the lens mass M and the diffractive
scintillation scale rdiff. We assume an FRB at a comoving distance of 1 Gpc,
and a lens at 0.5 Gpc. The scintillation screen is placed between the lens and
the observer at 0.25 Gpc. The angular separation between the lens and the
(unlensed) source, normalized to the Einstein angle, is y = β/θE = 0.5. The
frequency of the radio signal is taken to be 1 GHz.

In the absence of direct measurements, we are forced to rely
on theoretical estimates. Assuming Kolmogorov turbulence, we
can estimate the magnitude of IGM density fluctuations, C2

n , by
equating the density fluctuation at the outer scale to the average
IGM electron density n̄e 	 2.2 × 10−7 cm−3, corresponding to
fully ionized hydrogen and helium (Koay & Macquart 2015).8

Considering the balance between heating and dissipation of energy
in the IGM, ref. Luan & Goldreich (2014) estimated the outer
scale to be of the order of lout ∼ 1024 cm (∼ 0.3 Mpc). This
leads to

C2
n ∼ 2 × 10−17 m−20/3

(
n̄e

2.2 × 10−7 cm−3

)2(
lout

1024 cm

)−2/3

.

(46)

Substituting this into equation (45) and normalizing the thickness
of IGM to 1 Gpc we obtain the diffractive scale,

rdiff ∼ 4.5 × 1013 cm

(
L

Gpc

)−3/5(
lout

1024 cm

)2/5

×
(

n̄e

2.2 × 10−7 cm−3

)−6/5(
ν

GHz

)6/5

. (47)

This is comparable to the Fresnel radius for a scintillation screen
0.25 Gpc away, rF 	 6.3 × 1013 cm. We conclude that intergalactic
scintillation is at the borderline between the weak and strong
scintillation regimes.

The observability of the lensing signal in the presence of
IGM scintillation is illustrated in Fig. 7 as a function of rdiff

and of the lens mass. We see that for realistic parameters and
most of the interesting values of the lens mass the signal will
be in regime (b). In other words, the two lensed images will
be distorted incoherently, but the decorrelation bandwidth of the
scintillation will be large enough to accommodate multiple lensing
fringes.

The above estimate is based on the assumption that there are
no baryon overdensities – such as an interjacent galaxy or galaxy

8For simplicity, we neglect here the effects of redshift. They can be taken
into account systematically along the lines of ref. Macquart & Koay (2013).
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cluster – along the line of sight. As rdiff scales with n̄−6/5
e , such

an overdensity can greatly increase the strength of the scintillation.
While this might offer interesting opportunities for studies of the
IGM using scintillation (Ferrara & Perna 2001; Pallottini, Ferrara &
Evoli 2013; Koay & Macquart 2015), it is undesirable for searches of
FRB diffractive lensing. Fortunately, for sources at small redshifts
ZS < 1, where most observed FRBs are expected to occur, the
probability that the line of sight crosses a major baryon overdensity
is low. Namely, the probability of crossing a galaxy cluster is less
than 20 per cent and about 3 per cent for galaxies (Macquart &
Koay 2013). We will therefore assume the absence of overdensities
and use rdiff ∼ 4.5 × 1013 cm for the IGM.9

In a real sample of FRBs, one could use the known locations of
galaxies and galaxy clusters along the various lines of sight to reject
those FRBs which are likely to be affected by baryon overdensities.
Note that this restriction implies that the lens itself cannot lie inside
a galaxy or a cluster. This is not a problem for dark matter, most
of which is distributed in diffuse haloes, filaments, and voids. On
the other hand, it essentially precludes searching for diffractive
lensing by compact objects of astrophysical origin, such as brown
dwarfs (Eichler 2017).10

3.4 Scintillation summary

When studying realistic lensed FRB signals, we should in principle
consider the effect of intergalactic scintillation, of interstellar
scintillation in the FRB’s host galaxy, and of interstellar scintillation
in the Milky Way. From the discussion of the previous subsection,
we expect the effect of the IGM to be typically less important than
that of the ISM. We have verified this using a sample of simulations
where we combined IGM scintillation screens with ISM screens
(see Section 4 for the description of the simulation code Katz
et al. 2019a). However, the numerical cost of the simulations grows
rapidly with the number of screens, so to reduce the computation
time, we neglect IGM scintillation in the rest of our analysis.

The properties of the FRB host galaxies remain largely unknown,
despite localization of several burst sources (Chatterjee et al. 2017;
Tendulkar et al. 2017; Bannister et al. 2019; Ravi et al. 2019). In the
absence of any detailed information, we assume that the properties
of the ISM in the host galaxy are similar to that in the Milky
Way. Then, barring a chance alignment of the line of sight with the
galactic disc of the host, one can assume the scintillation screen of
the host galaxy to have similar an effect on the lensing signal as
the ISM screen of the Milky Way.11 Therefore, for our exploratory
study of the detectability of FRB lensing we choose to consider
only the ISM screen of the Milky Way, which allows us to further
reduce the required computing resources. It is worth emphasizing,

9Note that these estimates are still highly simplified. For instance, they
neglect the possibility of turbulent plasma far out in the halo of spiral
galaxies. Moreover, our treatment of scintillation does not distinguish
between spiral and elliptic galaxies. We do not expect such refinements
to qualitatively change our result, and we therefore leave them for future
work.
10The latter search might still be possible at higher frequencies ν � 5 GHz
where the scintillation effects are suppressed and the requirement to avoid
baryon overdensities may be relaxed.
11Strong temporal broadening of the signal has been observed for some
FRBs and is consistent with scattering on dense plasma inhomogeneities.
These are likely to occur in the close vicinity of the source Katz (2016), Xu &
Zhang (2016), in which case they do not significantly affect the detectability
of lensing.

however, that an actual future search for lensing signal in the data
should include modelling of scintillation both in the host galaxy and
in the IGM.

4 SI MULATI ONS AND R ESULTS

4.1 Formalism

To better understand the effect of scintillation on the spectra of
astronomical radio sources in general and FRBs in particular, we
have developed a simulation code to describe both lensing and
scintillation. It is capable of evolving the signal from a point-
like or extended radio source through an arbitrary stack of lensing
and scintillation screens, and onwards to an observer. Each screen
corresponds to a 2D plane, oriented perpendicular to the line of
sight. It associates each point �x = (x1, x2) on the plane with a
characteristic phase factor ϕj (�x) that is imparted to photons passing
through that point on the screen. Here, the index j numbers the
successive screens. The photon field Aj (�x) on the j-th screen is
obtained from the field Aj−1(�x) on the previous screen according
to the Fresnel integral,

Aj (�x) = k e
ik(zj −zj−1)

2πi(zj −zj−1)

∫
d2x ′ Aj−1(�x ′)

× exp
(

ik|�x−�x′ |2
2(zj −zj−1) + iϕj (�x)

)
(48)

(in analogy to equations 11 and 12). Here, zj is the comoving line-of-
sight distance of the source and the j-th screen, and the wavenumber
k is given by the dispersion relation in a plasma (equation 34).
In evaluating the plasma frequency ωp, we assume a mean ISM
plasma density of ne = 0.03 cm−3. The plasma density in the IGM
is several orders of magnitude smaller, but as we neglect scintillation
in the IGM following the discussion in Section 3.3, its precise value
does not affect our analysis. Without IGM scintillation, there is no
multipath propagation through the IGM, so all photons of a given
frequency are dispersed by the same amount. The screen A0(�x)
corresponds to the source; for a point-like source, it is simply a
δ-function centred at the coordinates �x0 of the source, A0(�x) =
δ(2)(�x − �x0). The last (n-th) screen in the stack is placed at the
location of the observer, so that the photon field An(�x) corresponds
to the observed image. We will not consider the spatial extent of the
image here and just evaluate An(0) for simplicity.

As in Section 3.1, the first term in the exponential factor under the
integral in equation (48) describes the additional geometric phase
that photons experience when travelling from �x ′ to �x (in the limit
that |�x| � zj − zj−1). For lensing screens, the phase factor ϕj (�x)
describes the non-geometric part of the Shapiro time delay

ϕlens
j (�x) = − (zj+1 − zj )(zj+1 − zj−1)

zj − zj−1
ψ(�x) , (49)

where ψ(�x) = θ2
E log

[|�x|/(zj+1 − zj−1)
]

is again the lensing po-
tential for a point-like lens, and θE is the Einstein angle defined in
equation (3).

For scintillation screens, ϕj (�x) = ϕscint
j (�x) describes the variation

in the dispersion relation due to random fluctuations of the plasma
density in the scintillating medium. As discussed in Section 3.3, it is
the modelling of these fluctuations that is the main source of uncer-
tainty in our calculations. We assume Kolmogorov turbulence (Kol-
mogorov 1941a, b; Elmegreen & Scalo 2004), i.e. we assume that
the fluctuation mode with wavenumber �κ on the screen has an
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amplitude |f̃ (�κ)| drawn from a Gaussian distribution of width12

σ scint(�κ) =
( �κ2

κ2
diff

)11/6

. (50)

Here, κdiff ≡ 2π /rdiff is an arbitrarily chosen reference scale. The
phase of f̃ (�κ) is also a random number, uniformly distributed
between 0 and 2π . We emphasize that �κ describes density
fluctuations on a scintillation screen and should not be confused
with the wavenumber k of the photon field. The scintillation phase
ϕscint

j (�x) is then proportional to the Fourier transform of f̃ (�κ):

ϕscint
j (�x) ∝

∫
d2κ ei�κ �x f̃ (�κ) . (51)

The normalization of ϕscint
j (�x) is chosen such that O(1) variations

in the phase occur over distance scales of the order of rdiff,〈[
ϕ(�x) − ϕ(�x + rdiffn̂)

]2
〉

= 1 , (52)

where 〈 · 〉 denotes averaging over the screen, and �n is a unit vector,
which we choose to be oriented in the x1 direction.13

We assume the incoming amplitude of the radiation at frequency
ω to be of the form:

fin(ν) ∝ exp

(
− ν

200 MHz

)
. (53)

This expression is an attempt to roughly fit an observed FRB
spectrum from ref. Masui et al. (2015). While we do not claim that
our extrapolation to higher frequencies than observed in ref. Masui
et al. (2015) is necessarily valid, our further analysis will rely mainly
on a reconstruction of the transfer function, largely reducing the
uncertainties associated with the exact shape of the FRB spectrum
(see Section 4.3).

4.2 Numerical implementation

To compute the Fresnel integral in equation (48) numerically, we
employ several simplifications:

(i) As the Fresnel integral on a lensing screen is numerically
very badly behaved, we treat lensing analytically. In other words,
if the j-th screen is a lensing screen, we evolve the photon field
directly from screen j − 1 to screen j + 1, multiplying by the
appropriate magnification (see equation 19). For the lens masses
considered in this paper, we always work in the geometric optics
limit, even though our code (released together with this paper; Katz
et al. 2019a) is also able to handle the wave optics regime, and
switches to it automatically if ω(DLDS/DLS) θ2

E < 10.
(ii) We discretize scintillation screens, i.e. we evaluate the inte-

grand in equation (48) on a square grid of points, and then evaluate
the integral as a simple sum. The size of the screen in both directions
is chosen �rref to make sure the region |�x| � rref, from which most
of the signal is received, is well within the simulated region. (At
distances �rref from the line of sight, the geometric phase varies
much faster than the scintillation phase, so that photons emitted from

12In general the statistics of the scintillation phase may be non-Gaussian.
A study of the corresponding effects is, however, beyond the scope of this
paper.
13This choice is convenient, given our discretization of the scintillation
screen. In principle, we should average over all directions of �n, but doing so
would not significantly affect our results because of the statistical isotropy
of the screen.

this regions mostly interfere destructively.) The grid spacing dx is
chosen much smaller than rdiff to make sure the phase fluctuations
on the screen are well resolved. Moreover, we require dx to be
small enough to still resolve the fast-varying geometric phase at the
edges of the screen. (The last requirement is dropped when the grid
becomes so large that it would not fit into GPU memory any more.)
To further optimize memory consumption, we do not simulate the
whole screen at once. Instead, we first simulate the long wavelength
fluctuations, discretized with a coarser grid spacing. The geometric
phase factor in the Fresnel integral from equation (48) is evaluated
only once for each cell on this coarse grid. The cell size of the coarse
grid is chosen �rF to ensure that this is a good approximation. For
simulating shorter wavelength fluctuations, we divide the screen
into smaller patches and simulate the fluctuations on each of them
separately, but at full resolution dx. The patches are always chosen
much larger than rdiff.

(iii) For most of our results, we reduce the scintillation screen
to one dimension. In other words, we assume all photons to travel
in the x1–z plane. This greatly reduces memory consumption and
computational effort, while all the essential features of scintillation
are preserved, as evidenced by the good agreement with the
qualitative analytic estimates from Section 3.2.

Our code (Katz et al. 2019a) is written in PYTHON 3, making heavy
use of the CUPY library Okuta et al. (2017) to run it on CUDA-enabled
GPUs and thus optimally benefit from the vectorizability and
scalability of our approach. In order to vectorize the evaluation of the
magnification function for gravitational lensing in the wave optics
regime, we had to implement vectorized versions of certain special
functions, notably the gamma function �(z) and the Laguerre
polynomials Ln(z), for the case of complex z and n. In imple-
menting the Gamma function, we follow Lanczos’ approximation
(Lanczos 1964; Press et al. 1988), while our implementation of
the Laguerre polynomials is based on the implementation in the
MPMATH package (Johansson et al. 2013, see also Johansson 2016).

4.3 Data analysis

Let us now outline the procedure we use to extract the lensing signal
from our simulated data. Our objective is to identify the periodic
modulation of the frequency spectrum due to lensing on top of the
stochastic background from scintillation. We would like to work in
particular with the Fourier transform

|T (τ )| ≡ ∣∣ FFT
(|T (ν)|2)∣∣ (54)

of the transfer function, equation (32), where the lensing signal
materializes as a peak at τ = �t. Of course, we do not have direct
access to the transfer function and its Fourier transform as we do
not know the initial spectrum at the source. Moreover, observing
the lensing peak is complicated by the fact that it is typically located
on top of a steeply falling (or rising) background.

The first step in our analysis chain is a fit of the logarithm of
the ‘observed’ radiation intensity, log Iobs(ν) ≡ log |fobs(ν)|2 with a
high-order polynomial (we use d = 15). To ensure the fit is smooth,
we use polynomial lasso regression with regularization parameter
0.05 (Santosa & Symes 1986; Tibshirani 1996). We then subtract
the fit function from log Iobs(ν) to obtain an estimate log |T̂ (ν)|2 of
the log of the transfer function |T(ν)|2 (equation 32). Besides lasso
regression with a 15th order polynomial, we tried several alternative
fitting functions and regularization methods (for instance ridge
regression). We found them to all perform roughly comparably.
The minor effects that various fitting strategies might induce on the
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reconstructed spectrum, can be studied by the reader independently
using our public code (Katz et al. 2019a).

At the second stage of our analysis, we look for peaks in |T (τ )|,
defined in equation (54). For a fixed peak time delay τ 0 and peak
width wτ , we fit a polynomial P(τ 0, wτ ; τ ) to the Fourier power
spectrum (in linear space), excluding the points in the interval
[τ 0 − wτ /2, τ 0 + wτ /2). The fitting is performed by polynomial
ridge regression, with regularization parameter 10−4. As previously,
fitting with other parameters yields comparable results and the
small differences can be traced by using alternative methods in
our code (Katz et al. 2019a). We then define a test statistic σ̂ as the
difference between |T (τ )|2 at the peak and the polynomial at this
time delay, normalized by the width of the peak and by the standard
deviation of all samples outside the peak region:

σ̂ (τ0, wτ ) = Nout peak
∑

j in peak

(|T (τ )|2 − P (τ0, wτ ; τ )
)

Nin peak
∑

j outside peak

∣∣|T (τ )|2 − P (τ0, wτ ; τ )
∣∣ . (55)

Here the sum in the numerator runs over the N time delay samples
inside the peak region, while the sum in the denominator runs
over all samples outside the peak region. We repeat this procedure
for each time delay τ 0 and each width wτ , and we consider as a
potentially interesting peak any local maximum in the 2D manifold
defined by σ̂ (τ0, wτ ). We quote a non-zero test statistic for the
lensing signal if a peak is found located within 15 per cent from the
‘real’ �t of the lens. Otherwise, we set σ̂ = 0. Note that the lensing
peak is typically narrow, so the highest significance is always found
for the minimum value of wτ , which corresponds to a peak spanning
two time delay bins. The procedure is illustrated in Fig. 8.

In the right-hand column of that figure, we also show how
the lensing peak in |T (τ )|2 is affected if we average Iobs(ν)
over frequency intervals �νav = 17 MHz before taking the Fourier
transform. We see that high-τ fluctuations are suppressed, but also
the height of the lensing peak is somewhat reduced. Averaging is
therefore a useful tool only when high-τ fluctuations are worrisome.
In our subsequent analysis, we will not use averaging.

To translate the test statistic σ̂ into a statistical significance, which
can then be interpreted as a quantile of the normal distribution,
we have simulated 10 000 pseudo-experiments. Each of them
corresponds to an unlensed FRB distorted by a scintillation screen
with rdiff = 1010 cm at 1 kpc. In each pseudo-experiment, we look
for a spurious peak at the �t that would correspond to lensing by a
10−3 M� PBH located at DL = 0.5 Gpc, y = 0.5. We plot the distri-
bution of the σ̂ values of the spurious peaks in Fig. 9. The quantiles
of this distribution correspond to the real statistical significance σ ,
which we will use below to set limits on the PBH abundance.

One comment is in order regarding this calibration procedure.
The distribution of σ̂ values can depend on the diffractive scale
rdiff of the scintillation screen. Nonetheless, as generating a large
number of pseudo-experiments is computationally expensive, we
use the curve in Fig. 9 for all values of rdiff. For rdiff > 1010 cm,
applying calibration based on Fig. 9 is too conservative, while for
smaller rdiff, it may somewhat overestimate the sensitivity. However,
we are going to find that for rdiff ∼ 109 cm, the sensitivity is weak
anyway.

4.4 Results

To anticipate the sensitivity of FRB lensing to compact dark matter
objects, we now investigate the significance of the lensing signal
as a function of the model parameters, in particular the lens mass
M, its position DL along the line of sight and angular distance β

from the line of sight, as well as the diffractive scintillation scale
rdiff in the Milky Way. For simplicity, we will keep the distance of
the source fixed at 1 Gpc (comoving), we will neglect intergalactic
scintillation as well as scintillation in the FRB’s host galaxy, and
we will assume the Milky Way’s scintillation screen to be located
at a distance of 1 kpc.

As a first result, we show in Fig. 10 the local statistical
significance of the lensing signal as a function of M and rdiff,
keeping DS = 1 Gpc, DL = 0.5 Gpc, and y ≡ β/θE = 0.5 fixed.
Note that in this scan we choose the instrumental frequency band
and frequency resolution as needed to well resolve the lensing peak.
This assumption may be unrealistic at very small lens masses, which
require very large frequency bands, and at very large lens masses,
which require very high frequency resolution. Therefore, at high
and low lens masses Fig. 10 should be thought of as proof of
principle rather than as a realistic expectation. Fig. 10 confirms
our expectations from Fig. 4: the sensitivity is good except at the
smallest rdiff values. In the left-hand panel of Fig. 10, we observe
a loss of sensitivity at low masses. There, the lensing peak in
|T (τ )|2 falls in the low-τ region and is buried underneath the Fourier
transform of the smooth component of the intensity spectrum. As
expected, reconstruction of the transfer function by dividing out
the smooth component significantly increases the sensitivity, as
illustrated in the right-hand panel.

In order to proceed further, we focus specifically on a future
SKA-type observatory.14 This is expected to have a wide frequency
band extending above a few GHz. Going to higher frequencies is
beneficial for detecting diffractive lensing by dark matter as it makes
scintillation less important. Of course, our analysis can be repeated
for radiotelescopes operating at lower frequencies, in particular, for
CHIME15 and ASKAP.16

As our fiducial parameters we will assume a frequency resolution
no better than 1 MHz and a band width no larger than 10 GHz. This
is based on the frequency range of the SKA-MID array, and on
the expected resolution of the instrument Dewdney et al. (2015),
Bonaldi & Braun (2018). With these assumptions, we simulate the
lensing signal as a function of the lens mass, the lens distance
DL from the observer, and its angular distance y from the line of
sight. Once again, we assume DS = 1 Gpc, and we introduce an
interstellar scintillation screen at 1 kpc, with rdiff = 1010 cm. For
each combination of M, DL, and y, we then estimate the expected
local significance of the signal, as described in Section 4.3. Note that
we do not run simulations for lens masses above 0.1 M� because
detecting a lensing signal in that case would require a frequency
resolution better than 1 MHz. Similarly, we do not consider lens
masses below 10−4 M�, where the spacing of lensing fringes in the
spectrum becomes comparable to the maximum bandwidth.

To obtain a bound on the abundance of point-like lenses such as
PBHs, we largely follow the statistical procedure described in Katz
et al. (2018). We define the likelihood function for a single FRB
source at redshift ZS,

LFRB(M,ρPBH, ZS ) = L0(0) +
∫

d3x (1 + ZL)3 ρPBH

M

[
L0( �μ) − L0(0)

]
. (56)

Here, L0( �μ) is the likelihood of the (simulated) data – assumed
not to contain a lensing signal – when compared to a model
that does contain a lens with parameters �μ ≡ (M,ZL, y). We set
L0( �μ) = 1 − erf(σ/

√
2), where σ is the significance of the lensing

14https://www.skatelescope.org
15https://chime-experiment.ca
16https://www.atnf.csiro.au/projects/askap/index.html.
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Figure 8. The analysis of a single, diffractively lensed FRB spectrum following the steps described in the text. The upper left-hand plot shows the radiation
power spectrum, and the lower left-hand plot shows the Fourier transform thereof, where the lensing peak is clearly visible at the expected time delay (vertical
black line). However, we also notice a strong enhancement of the power at small τ , which in some cases spoils the detectability of the lensing peak. Similarly,
the middle column shows the reconstructed transfer function and its Fourier transform, and the column on the right-hand side shows the same after averaging
procedure described in the text. The enhancement at small τ has disappeared and only the lensing peak remains. We have assumed a source at a comoving
distance DS = 1 Gpc and a lens at DL = 0.5 Gpc, y = 0.5. An ISM scintillation screen is placed at DScO = 1 kpc, and rdiff = 109 cm at the spectral midpoint.

Figure 9. Relative occurrence of statistical measures σ̂ in the FFT-squared
of the power spectrum in the pseudo-experiments sample. The distribution
can be reasonably approximated by Gaussian. We calibrate our statistical
significance based on this curve.

signal discussed in Section 4.3 above. This immediately implies that
L0(0), the likelihood of the data when compared to the theoretical
prediction in the absence of a lens, equals unity. LFRB(M, ρPBH,
ZS) then measures the likelihood of data which does not contain
a lensing signal when compared to the prediction assuming a
population of lenses of mass M and mass density ρPBH. The factor
d3x (1 + ZL)3 ρPBH/M measures the probability of finding a lens in
a small volume element d3x at redshift ZL. The integral in equation

(56) runs from the source to the observer in the longitudinal (z)
direction, and out to infinity in the transverse direction. (In practice,
we cut it off at y = |�x⊥|/(DLθE) = 5, as there will be no sensitivity
to lenses that are further away from the line of sight.) Note that �x here
refers to a 3D physical (not comoving) coordinate. In writing down
equation (56), we have assumed that the probability for a single
source to be lensed by two lenses simultaneously is negligible.

To compute LFRB(M, ρPBH, ZS) for a given lens mass M, lens
density ρPBH, and source redshift ZS, we evaluate σ as function of
the lens coordinates. We then evaluate the integral over d3x on the
resulting grid.

Of course, observing just a single FRB is not sufficient to set a
meaningful limit on compact dark matter. Observing a large number
N of them, however, will greatly boost the sensitivity of the method.
We estimate the expected 95 per cent confidence level exclusion
limit on ρPBH for fixed M by solving the equation

− 2 log

( N∏
i=1

Li
FRB(M,ρPBH , Zi

S)

Li
FRB(0, 0, Zi

S)

)
= 5.99 . (57)

Note that Li
FRB(0, 0, Zi

S) = 1. For simplicity, we will in the fol-
lowing assume that all sources are at the same redshift, and that
also the properties of the interjacent scintillation screens are the
same. When the probability for lensing a single FRB is small
(LFRB(M,ρPBH, Zi

S) ≈ 1), the reach for the PBH density ρPBH is
then inversely proportional to the number of sources N. This is
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Figure 10. The local statistical significance of the diffractive lensing signal expected in a typical FRB spectrum as a function of the lens mass M and the
diffractive scintillation scale rdiff of the interstellar medium. We assume an FRB at a comoving distance of 1 Gpc and a lens at DL = 0.5 Gpc, y = 0.5. An ISM
scintillation screen is placed at DScO = 1 kpc, and the quoted rdiff values are at the spectral midpoint. Numbers in each grid cell indicate the local significance
of the scintillation peak in our simulations, calculated as described in Section 4.3. The left-hand panel is based directly on the simulated radiation intensity
spectrum, while in the one on the right, we have divided out the smooth component of the spectrum using lasso regression. A clear benefit of this step is visible,
especially at low lens masses.

because increasing the number of sources linearly decreases the
effective optical depth.

The resulting bound on the PBH parameter space is shown
in Fig. 11 and compared to other constraints on primordial black
holes. We see that, for a realistic number of FRB observations in
SKA (a few tens per day; Macquart et al. 2015), our method can
be expected to yield highly competitive constraints. Even more
importantly, the expected limits are complementary to those from
microlensing searches because FRBs probe the distribution of dark
matter over cosmological distance scales, while microlensing is
sensitive to dark matter in the Milky Way and its immediate
vicinity. This makes diffractive lensing of FRBs a particularly
interesting probe for compact dark matter minihaloes, which may
be inaccessible to microlensing searches due to their non-negligible
spatial extent (Dror et al. 2019). Indeed, the condition rL < rE

on the lens size rL, under which the lens can be treated as point-
like, is more readily satisfied at cosmological distances. Besides,
minihaloes may exist in regions of low baryon density, but may
have suffered tidal disruption in the Milky Way. The sensitivity of
diffractive lensing ends at PBH masses below 10−4 M� because
at such low masses the lensing peaks in the frequency spectrum
are too far apart for a significant number of them to be contained
in a realistic instrumental frequency band. At high PBH mass, the
limiting factor is the instrumental frequency resolution.

In general, it should be mentioned, that in vast majority of the
models the mass distribution of the dark matter can be relatively
broad. While we are assuming here a very narrow distribution,
generalization to realistic mass distributions is desirable (Green
2016; Carr et al. 2017; Kuhnel & Freese 2017; Bellomo et al. 2018;
Laha 2018; Poulter et al. 2019).

Finally, we briefly mention other proposals for probing PBHs in
the mass range between 10−4 M� and 1 M�. A novel method to
probe compact objects in the Milky Way is pulsar timing (Siegel,
Hertzberg & Fry 2007; Seto & Cooray 2007; Kashiyama & Seto
2012; Clark, Lewis & Scott 2016; Schutz & Liu 2017; Dror

et al. 2019). An alternative, indirect, approach involves primordial
gravitational waves produced by adiabatic density fluctuations
which also give rise to PBH formation (Saito & Yokoyama 2009;
Garcia-Bellido, Peloso & Unal 2017; Cai, Pi & Sasaki 2019).
The method is thus specific to PBH production via enhanced
adiabatic Gaussian density fluctuations.18 At somewhat larger PBH
masses, one can look for gravitational waves from PBH mergers
(Raidal, Vaskonen & Veermae 2017; Kavanagh, Gaggero & Bertone
2018; Abbott et al. 2019; Chen & Huang 2019). The expected
gravitational wave signal is, however, subject to large uncertainties
in the evolution of PBH populations over cosmological history
(Nakamura et al. 1997; Ioka et al. 1998; Ali-Haı̈moud, Kovetz &
Kamionkowski 2017; Kavanagh et al. 2018; Raidal et al. 2019;
Vaskonen & Veermae 2020). In the region of lighter masses, PBHs
can lead to the destruction of neutron stars (Capela, Pshirkov &
Tinyakov 2013) and white dwarfs (Graham, Rajendran & Varela
2015). Exploiting these mechanisms to set limits is, however,
complicated by uncertainties in the dark matter concentration in
globular clusters (Conroy, Loeb & Spergel 2011; Ibata et al.
2013) and in the treatment of energy deposition by PBHs crossing
stars (Katz, Kurkela & Soloviev 2019b; Montero-Camacho et al.
2019).

5 C O N C L U S I O N S A N D O U T L O O K

In this work we have analysed the sensitivity of diffractive grav-
itational lensing of FRB signals to compact dark matter objects
(MACHOs). Diffractive lensing (sometimes called femtolensing or
nanolensing in the literature) means the interference of the two

18Recently, this method has been applied to NANOGrav data (Chen, Yuan &
Huang 2019). However, the resulting limits are exponentially sensitive to
theoretical uncertainties.
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Figure 11. Expected limits on primordial black holes from diffractive lensing of FRBs. We assume an interstellar scintillation screen at a distance of 1 kpc,
with diffractive scale r ISM

diff = 1010 cm at 1 GHz, and negligible intergalactic scintillation. We compare our projections (in blue) to microlensing constraints
from Subaru HSC (Kepler Griest, Cieplak & Lehner 2013; Niikura et al. 2019),17 MACHO (Allsman et al. 2001), EROS (Tisserand et al. 2007), and
OGLE (Wyrzykowski et al. 2011), to CMB constraints due to accretion on to PBHs (Ali-Haimoud & Kamionkowski 2017), to limits based on the dynamics of
ultrafaint dwarf galaxies (Brandt 2016), and to bounds on the contribution of Hawking radiation from PBHs to the extragalactic gamma background (Carr et al.
2010). We emphasize that CMB and gamma-ray background constraints are based on specific properties of PBHs, and that the other existing constraints probe
the local distribution of dark matter in the Milky Way and its immediate neighbourhood. By contrast, diffractive lensing of FRBs offers a model-independent
probe of MACHOs at cosmological distances.

lensed images of a source, which leads to periodic modulation of
the observed frequency spectrum.

We have studied the interplay between the lensing signal and
distortions caused by interstellar scintillation, and we have con-
cluded that the lensing signal can often be extracted in spite of the
distortion. We have developed a data analysis procedure to extract
the lensing signal and showed its efficiency on simulated data. Our
results indicate that the existing and future FRB surveys carried out
by ASKAP, CHIME, and SKA will be able to strongly constrain the
cosmological MACHO abundance. As an illustration, we studied the
sensitivity of an SKA-like survey to PBH dark matter. We concluded
that it will be able to probe the parameter space of PBHs in the mass
range between 10−4 M� and 0.1 M� and constrain their abundance
down to about 1 per cent of the total dark matter content of the
Universe.

Compared to microlensing searches, which also probe primordial
black holes in this mass range, our method is unique because
it tests the distribution of dark matter at cosmological distances
rather than in our local cosmic neighbourhood. This distinction
is particularly important when generalizing our bounds to other
compact dark matter candidates such as dark matter minihaloes.
The local abundance of dark matter minihaloes may be reduced due
to tidal disruption in the Milky Way, suppressing the probability
of microlensing events. Moreover, microlensing searches may be
insensitive to dark matter minihaloes due to their non-negligible
spatial extent, which is larger than the Einstein radius at galactic
distances. At cosmological scales, on the other hand, the Einstein
radius is significantly larger and may well exceed the minihalo’s
size, so that it acts effectively as a point-like lens. In this case, our
results are directly applicable. Investigating the sensitivity of FRB
lensing to more extended compact objects will be an interesting
direction for future work.

Apart from dark matter, the range of lens masses considered in
this paper may also contain objects of astrophysical origin, such as
brown dwarfs. However, it appears unlikely that they can produce
a discernible lensing signal in FRB spectra. The reason is that they
are expected to reside in regions of high baryonic density, namely
galaxies, characterized also by high concentrations of free electrons.
The scattering of radio waves produced by this ambient plasma will
be much stronger than the deflection of light due to gravitational
lensing, so that the effect of the latter will be completely swamped
by scintillation. In principle, the situation might improve for FRBs
with spectra extending to high frequencies �5 GHz, where the
scintillation effects become weaker. We leave the study of this
interesting possibility for future.

Before concluding, we emphasize again that the reach of diffrac-
tive lensing of radio signals depends on our understanding of
interstellar and intergalactic scintillation, and thus of turbulence
in the ISM and IGM. While the scintillation parameters we have
assumed in this work represent our current best understanding of
these phenomena, future observations should allow us to much
better quantify the impact of scintillation. The rapid progress in the
study of FRBs and in radio observations in general will contribute
to reducing this uncertainty.
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